Образование » Формирование алгоритмических умений у школьников на примере темы тождественных преобразований » Особенности формирования алгоритмических умений

Особенности формирования алгоритмических умений

Страница 1

Содержательно - методические линии во многих отношениях обнаруживают сходство друг с другом. К наиболее существенным общим чертам относятся ранняя выделенность ведущего в линии понятия; длительный срок его функционирования в курсе как предмета изучения; формирование систем понятий, раскрывающих содержание линии; установление многообразных связей внутри линии.

Реализация алгоритмической линии в известных нам учебниках алгебры, не обладает ни одной из перечисленных черт. Это находит выражение в особенностях ее положения в курсе школьной алгебры. Ведущее в алгоритмической линии понятие - алгоритм - выделяется в конце курса и, по существу, остается в ней изолированным, поскольку понятие блок-схемы выполняет только иллюстративные функции, а представление о программе и алгоритмических языках дается в ознакомительном плане. Понятие алгоритма служит предметом изучения весьма короткое время, и используется в ограниченном масштабе; главным образом, как термин, заменяющий такие понятия, как правило, последовательность операций и т.п., если требуется подчеркнуть алгоритмический характер действий. Для рассматриваемой линии наиболее характерна пропедевтика понятия алгоритма, которая производится при помощи определенной организации материала других линий.

Сходные особенности имеют и некоторые другие содержательно-методические линии, например прикладная, для которой ведущее понятие - математическая модель, вообще не входит в курс алгебры, а так же логическая. Факт принадлежности данной линии к одной из двух описанных здесь групп имеет определенное значение для исследования относящихся к этой линии методических проблем. Линии первого типа кажется естественным назвать выявленными, а второго - невыявленными.

Следует сказать, что выявленность - относительная характеристика линии. Она зависит от многих причин, в частности, от той эпохи или исторического периода, к которой относится создание анализируемого курса, от учебника, в котором эти курсы реализованы. В отношении алгоритмической линии представляется правдоподобным, что выявление ее в школьной алгебре - дело сравнительно недалекого будущего.

В отношении невыявленных линий важной проблемой является выбор материала, на котором происходит формирование содержания этой линии. Этот материал может быть специфическим для ведущего понятия линии, характеризующим его теоретическое содержание, либо неспецифическим, относящимся к основному содержанию курса алгебры. Например, понятие алгоритма можно пытаться вводить, используя различные известные формальные конструкции, но можно использовать осмысление обычных процедур, входящих в школьную алгебру. В дальнейшем будем рассматривать только материал, неспецифический для алгоритмической линии. Исходим при этом из того, что понятие алгоритма является математической моделью определенного класса процессов, играющих очень важную роль и в математике, и в ее приложениях; задача курса алгебры - адекватным образом сформировать эти модельные представления. Свое дальнейшее развитие они получат в курсе информатики и вычислительной техники.

Создание теории алгоритмов сопровождалось исключительно внимательным методологическим анализом природы алгоритмов и их роли в математике. В ходе исследований были выделены несколько компонентов понятия алгоритма: дискретность, детерминированность, результативность, массовость, конечная определенность. В итоге были созданы два понятия, содержательное и формальное, связанные друг с другом тезисом Тьюринга, который утверждает их содержательную эквивалентность. Дидактический и методический анализ понятия алгоритма проводился многими авторами. С точки зрения методики существенным оказывается то, что используя выделенные компоненты можно провести компонентный анализ и разработать систему изучения алгоритмической линии школьного курса алгебры. Материалом для организации пропедевтики понятия алгоритма при этом служат несколько операционных блоков при определенной методике их изучения.

Страницы: 1 2

Похожие публикации:

Игры в воде с дошкольниками
Игры используются с самых первых занятий для освоения детей с водой. Плескаясь и играя на мелком месте, младшие дошкольники безболезненно преодолевают чувство неуверенности и страха, быстро адаптируются в воде, привыкают смело входить и погружаться в нее, передвигаться уверенно и без напряжения. Иг ...

Значение игровых технологий в обучении детей младшего школьного возраста
Некоторые исследователи считают, что не только содержание, но и вообще склонность к игровой деятельности зависит от социальной ситуации. В педагогической психологии считается, что игра — деятельность именно дошкольного возраста. В. Москвичев в статье «Возможности развития ролевой игры» оспаривает э ...

Успешная система образования. Концепция государства благосостояния
Финская система образования – одна из самых лучших в мире. Исследование «PISA» проведенное в 2009 году и затронувшее вопрос наличия у молодежи необходимого уровня грамотности, а также уровень знаний молодых людей в математике и естественных науках, показало, что Финляндия находится на высоких позиц ...

Возрастные особенности внимания

Возрастные особенности внимания

Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.

Категории

Copyright © 2019 - All Rights Reserved - www.eduriver.ru