Образование » Формирование алгоритмических умений у школьников на примере темы тождественных преобразований » Изучение темы «Тождественные преобразования»

Изучение темы «Тождественные преобразования»

Страница 2

Содержание линии тождественных преобразований выделяется в настоящее время с полной определенностью. В нее входят изучение тождеств в числовой системе, их применение к упрощению выражений и решению уравнений, изучение тождеств в классе элементарных функций.

Именно на материале данной линии было выделено понятие цикла заданий. Теоретико-методическое описание. Цикл заданий характеризуется соединением в последовательности упражнений нескольких аспектов изучения и принципов расположения. Применительно к тождествам их можно описать так. Цикл заданий связан с рассмотрением одного выделенного для изучения тождества, вокруг которого группируются другие тождества, находящиеся с ним в естественной связи. В составе цикла, наряду с исполнительными, включаются задания, требующие распознавания применимости рассматриваемого тождества. Производится специализация тождеств на материале числовой системы. Изучаются соответствующие языковые средства.

Задания в цикле разбиты на две группы. К первой относятся те, которые выполняются при первоначальном ознакомлении с тождеством. Они служат материалом для нескольких подряд идущих уроков, тематически объединенных введением данного тождества. Вторая группа связывает изучаемое тождество с различными приложениями. Она не образует композиционного единства; упражнения этой группы разбросаны по различным темам курса алгебры и в последующих математических дисциплинах.

Отмеченная структура цикла относится к этапам, предшествующим синтезу курса. На этом этапе циклы видоизменяются в двух отношениях. Во-первых, происходит слияние циклов, относящихся к различным тождествам, так что в итоге формируется что-то вроде операционного блока произвести тождественное преобразование, аналогичное блоку решить уравнение. Однако, это слияние производится в большей своей части уже вне рамок школьного курса алгебры. Во-вторых, обе группы заданий соединяются, причем из первой исключаются некоторые простейшие упражнения, а задания остающихся типов усложняются.

Основные методические особенности заданий описанных двух групп можно изложить, воспользовавшись лингвистическими понятиями парадигмы и синтагмы. Первая группа заданий направлена на формирование математического языка в той его части, которая относится к данному тождеству. Развертывание происходит по мере выявления синтаксических особенностей формулы, выражающей данное тождество, а описание имеет форму парадигмы тех средств языка математически, которые связаны с этим тождеством. Вторая группа заданий включает введенные языковые средства в синтагматические связи с различными областями курса школьной математики.

Тождества, изучаемые в школьном курсе математики, можно разделить на два класса. Первый из них составляют тождества, связанные с числовой системой и определенными в ней арифметическими действиями. Эти тождества назовем кольцевыми. Второй класс образован тождествами, связывающими арифметические действия с элементарными функциями - показательной, логарифмической, степенной. Эти функции характеризуются тем, что они являются непрерывными и монотонными изоморфизмами групп R(+) и R+(.) друг в друга; назовем эти тождества групповыми. По роли в изучении математики кольцевые и групповые тождества очень близки. Следует отметить, что в настоящее время определенная часть материала, относящаяся к изучению элементарных функций, переносится в курс математики старших классов, в частности, это относится и к значительной части групповых тождеств. В этом пункте отметим лишь несколько специфических черт изучения групповых тождеств.

Эта специфика проявляется в том, что во первых, изучение групповых тождеств происходит по системе введения и изучения соответствующих классов функций и, во-вторых, групповые тождества появляются позже кольцевых и изучаются в условиях, когда общая идея тождества и навыки применения тождественных преобразований уже освоены. Указанные черты несколько усложняют анализ циклов, относящихся к групповым тождествам, но не приводят к необходимости внесения в циклы структурных изменений. Первое из отмеченных отличий влияет на характер синтаксических заданий в циклах по каждому из групповых тождеств. Второе различие учитывается при построении парадигматической и синтагматической частей циклов.

Наиболее резкой особенностью групповых тождеств по сравнению с кольцевыми служит необходимость систематического учета области определения; при изучении кольцевых тождеств этот вопрос возникает лишь в связи с изучением рациональных функций. Для осознания такой необходимости целесообразно использовать сопоставление разнородных по материалу заданий.

Страницы: 1 2 3

Похожие публикации:

Инновационный подход к организации воспитательной работы в школе - интернате
Для понимания темы рассмотрим некоторые определения: Шайденко Н.А. и Подзолков В.Г. рассматривают Воспитательную работу как систему специальных приемов и мероприятий, направленных на преодоление или ослабление недостатков. Комаров В.В. считает, что Воспитательная система это развивающийся во времен ...

Анализ результатов сформированности развития фонематического слуха
По окончании формирующего исследования нами были обработаны полученные данные. Полученный нами результат свидетельствует о положительной динамике в развитии фонематического слуха у детей дошкольного возраста со стёртой дизартрией, это можно проследить по данным таблицы 2.2 Таблица 2.2 Сформированно ...

Формирование навыков словообразования у дошкольников с ОНР
У детей с ОНР в устной речи недостаточность словообразовательных навыков проявляется в неполноте использования различных частей речи, множественных заменах и смещениях слов, отсутствие в словаре ребенка многих слов и т. д., вследствие чего в речи употребляются в основном существительные и глаголы, ...

Возрастные особенности внимания

Возрастные особенности внимания

Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.

Категории

Copyright © 2021 - All Rights Reserved - www.eduriver.ru