Образование » Формирование алгоритмических умений у школьников на примере темы тождественных преобразований » Изучение темы «Тождественные преобразования»

Изучение темы «Тождественные преобразования»

Страница 1

Система основных понятий линии тождественных преобразований чрезвычайно проста. В нее входят всего два понятия : тождество и тождественное преобразование. Развертывание этой системы в обучении не приводит к каким-либо принципиальным осложнениям, независимо от положенных в основу курса концепций. В любом случае формируемые понятия лишены разночтений , так как понятие тождества одноаспектно. Указанная особенность резко противопоставляет линию тождественных преобразований таким линиям, как функциональная или числовая. В последних случаях установление соответствий различных аспектов понятий - наиболее ответственное звено и в обучении, и в методических исследованиях.

Простота внутреннего строения линии тождественных преобразований накладывается на многообразие связей этой линии. В качестве важного примера рассмотрим соотношение тождественных и равносильных преобразований, которые систематически используются в составе одного оперативного блока.

Пример. Решить уравнения a) 5x-3x=2, б) 5x=2+3x, в) 6+(2-4y) +5y=3(1-3y) .

В задании а) упрощение достигается при помощи применении тождества - распределительного закона. Основанное на этом тождестве тождественное преобразование переводит данное уравнение в равносильное уравнение 2x=2 . Второе задание сводится к первому посредством равносильного преобразования - переноса слагаемого в противоположную часть равенства с изменением знака. Видно, что уже в решении такого простого уравнения используются оба типа преобразований - и тождественное, и равносильное. Это положение для более сложных заданий, таких, как в), становится нормой.

Отметим, что на первых этапах изучения алгебры ученики не располагают способами теоретического осмысления процесса решения уравнений за исключением опоры на правила, выведенные из свойств действий над числами. В частности, им неизвестно различие тождественных и равносильных преобразований. Особой нужды в этом различии и не ощущается. Оно становится необходимым лишь тогда, когда начинают применяться неравносильные преобразования. Роль логической компоненты в процессе решения уравнения при этом возрастает , и сам процесс приобретает расчлененный вид: некоторые используемые в нем преобразования становятся предметом специального рассмотрения. По отношению к ним рассматривается ряд вопросов как общего (свойства преобразований, условия применимости), так и частного (требуется ли проверка в случае применения) характера.

Интенсивность такой деятельности, однако, постепенно спадает. Вновт происходит свертка процедур применения преобразований. Деятельность по решению перестает восприниматься учениками как расчлененная. Она достигает известного автоматизма и в проведении выкладок, и в распознавании применимости того или иного преобразования, характеризации его влияния на процесс решения.

В итоге, динамика прохождения курса алгебры в отношении линии тождественных преобразований принимает следующий вид. На этапе начал алгебры - нерасчлененная система преобразований, представленная правилами выполнения действий над одной или обеими частями формул. На этапе формирования операционных блоков система преобразований разделяется на типы: тождественные и равносильные преобразования; производится систематическое изучение их свойств. На этапе синтеза организуется целостная система преобразований четко и надежно установленными связями отдельных составляющих ее частей.

Приведенное описание подводит к выводу, что развертывание линии тождественных преобразований проходит в тесной связи развитием теории уравнений и неравенств. Фактический анализ учебных пособий по алгебре показывает, что изучение тождественных преобразований несколько опережает формирование операционных блоков в линии уравнений и неравенств, хотя для различных классов уравнений, неравенств и их систем картины довольно сильно отличаются друг от друга.

Организация изучений отдельных тождеств обладает определенной спецификой в отношении используемых систем заданий. Рассмотрим некоторые из этих особенностей, опираясь на важное общеметодическое понятие цикла упражнений.

Понятия и действия, входящие в состав линии тождественных преобразований, раньше других подверглись углубленной методической разработке. Это связано с тем, что в исторической перспективе использование буквенной символики - наиболее заметная особенность алгебры при этом основой применения буквенной символики служат тождественные преобразования.

Страницы: 1 2 3

Похожие публикации:

Примерные нормы и обратная связь
В целом при повторном тестировании в каждом классе примерно половина учащихся выполняет эту работу лучше, а около четверти — показывает худший результат. Обратная связь — это индивидуальный анализ результатов тестирования с указанием количества просмотренных знаков, ошибок, уровня точности, с конкр ...

Методика «Диагностика экологических знаний дошкольников»
Задание 1 (проводится индивидуально с каждым ребенком) Цель. Определить уровень знания характерных особенностей представителей мира животных. Оборудование. Три большие карты, первая разделена натри части (хозяйственный двор лес, пейзаж жарких стран); на второй карте изображены голубое небо, ветви д ...

Инновационный подход к организации воспитательной работы в школе - интернате
Для понимания темы рассмотрим некоторые определения: Шайденко Н.А. и Подзолков В.Г. рассматривают Воспитательную работу как систему специальных приемов и мероприятий, направленных на преодоление или ослабление недостатков. Комаров В.В. считает, что Воспитательная система это развивающийся во времен ...

Возрастные особенности внимания

Возрастные особенности внимания

Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.

Категории

Copyright © 2018 - All Rights Reserved - www.eduriver.ru