Каждая вновь вводимая в курсе алгебре элементарная функция расширяет область чисел, допускающих индивидуальное обозначение. Поэтому в синтаксической части цикла присутствуют задания на установление связи этих новых числовых областей и исходной области рациональных чисел. Такие типы заданий и являются тем новым, что отличает синтаксическую часть циклов для групповых от кольцевых.
Большинство тождеств, входящих в курс алгебры, в нем доказываются или, по крайней мере, поясняются. Эта сторона изучения линии тождественных преобразований имеет большое значение для курса алгебры в целом, так как доказательные рассуждения в значительной мере относятся именно к материалу данной линии. За ее пределами доказательные рассуждения значительно реже выделяются из состава применяемых средств обоснования.
Огромную сложность для методики математики представляет выделение оснований, на которых производятся доказательства в курсе алгебры. По видимому, не представляется возможным считать, что такими основаниями служат только аксиоматические системы различных числовых областей в том виде, как они изложены в теоретических курсах. В противном случае курс школьной алгебры допускал бы перестройку, при которой он, по крайней мере, внешне приобрел вид содержательно аксиоматизированого изложения предмета, подобно школьному курсу геометрии. Важнейшее обстоятельство, которое препятствует этому, состоит в решающем значении для алгебры не структур доказательств, а структур операций и преобразований. Кроме того, к обоснованию алгебраических свойств нередко привлекаются наглядные и содержательные соображения. Указанными причинами следует объяснить видимую при самом поверхностном взгляде на учебники по алгебре локальность их свойств, из которых производится развертывание материала.
Приведенные причины объективны, и поэтому структура курса алгебры в рассматриваемом аспекте не может быть изменена. Вместе с тем, в составе локальных средств, применяемых к обоснованию, можно указать некоторое устойчивое, глобальное ядро, которое участвует практически во всех доказательствах, хотя и не всегда последовательно. Это - основные свойства арифметических операций. Нередко они формулируются на первых уроках алгебры в школе и некоторое время довольно часто используются явно. Но вскоре ссылки на них все более сжимаются, и на первый план выступают свойства, характеризующие непосредственно изучаемые объекты - локальные свойства.
По характеру проведения и предметным областям доказательства в линии тождественных преобразований можно разделить на три типа: а) неполностью строгие рассуждения, требующие для придания им полной строгости применения математической индукции: они используются, например, при выводе свойств одночленов и правил действий с многочленами; б) полностью строгие рассуждения, опирающиеся на свойства, равносильные аксиомам поля; основная область их применения - тождества сокращенного умножения; в) полностью строгие рассуждения, использующие условия разрешимости уравнений вида f(x)=a, где f -элементарная функция; этот тип доказательств относится только к выводу групповых тождеств.
школьник тождественный преобразование алгебра
Анализ реформы системы образования и мониторинга
эффективности средних профессиональных учебных заведений
На вершине полномасштабной реформы системы российского образования, безусловно, находится новый Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», вступивший в силу с 1 сентября 2013 г., т.е. уже с нового учебного года. Причем необходимость проведения реформы российск ...
Факторы, способствующие повышению активности
школьников на уроках физической культуры
Активность учащихся во многом зависит от многих факторов, основными из которых являются: правильная постановка задач урока, создание положительного эмоционального фона, оптимальная загруженность школьников на уроке. Создание положительного эмоционального фона имеет исключительное значение на уроках ...
Проведение экскурсии
Вопросы биологии в трудах К.Э. Циолковского (тезисно из статьи «Пророк в своем Отечестве»). Проблемы космической медицины и биологии, философские проблемы освоения космоса, самозарождение жизни, биомеханика и др. В 30-е годы в связи с развитием высотной авиации и овладением стратосферой в СССР нача ...
Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.