Образование » Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами » Теоретико-множественный смысл понятия числа и арифметических действий над ними

Теоретико-множественный смысл понятия числа и арифметических действий над ними

Страница 3

Рис.6.

б) уменьшение множества, равночисленного данному, на несколько предметов:

Рис.7.

в) сравнение двух предметных множеств, т. е. ответ на вопрос «На сколько предметов в одном множестве больше (меньше), чем в другом?»:

Рис.8.

В процессе выполнения предметных действий у ребенка формируется представление о вычитании как о действие, которое связано с уменьшением количества предметов.

Рассмотрим конкретный пример: «У Маши было пять кукол. Две она подарила Тане. Покажи куклы, которые у нее остались». Дети рисуют 5 кукол, зачеркивают 2 и показывают куклы, которые у нее остались.

Рис.9.

Для разъяснения смысла вычитания, также как и сложения, можно использовать представления детей о соотношение целого и части. В этом случае куклы, которые были у Маши («целое»), состоят из двух частей: «куклы, которые она подарила и куклы, которые у нее остались».

Часть всегда меньше целого, поэтому нахождение части связано с вычитанием. Обозначая части и целое их числовыми значениями, дети получают выражение 5 – 2 или равенство 5 – 2 = 3. В процессе выполнения у детей формируется представление о понятие «меньше на».

Из курса математики нам известно, что если а и в целые неотрицательные числа, то:

а) а · в = а + а + а + … + а, при в < 1;

в слагаемых

б) а · 1 = а, при в = 1

в) а · 0 = 0, при в = 0

Теоретико-множественная трактовка этого определения лежит в основе разъяснения младшим школьникам смысла умножения. Она легко переводится на язык предметных действий и позволяет для усвоения нового понятия активно использовать ранее изученный материал. Для осознания необходимости введения нового действия можно использовать различные реальные ситуации. Например: учащимся предлагается подсчитать количество кафельных плиток, необходимых для выкладки стены на кухне. Стена имеет форму прямоугольника разбитого на квадраты (это может быть клетчатая часть доски). Они, естественно, начинают действовать способом по единичного счета клеток, но скоро обнаруживают трудоемкость такой работы. Подчеркнув это, учитель ставит задачу найти более простой путь поиска ответа. Конечно, сами учащиеся могут не менее при этом будут созданы благоприятные психологические условия для его принятия.

Страницы: 1 2 3 4 5

Похожие публикации:

Виды нарушений осанки
Отклонения от нормальной осанки принято называть нарушениями, или дефектами осанки. Нарушения осанки не являются заболеванием. Они связаны с функциональными изменениями опорно-двигательного аппарата, при которых образуются порочные условно-рефлекторные связи, закрепляющие неправильное положение тел ...

Диагностика сформированности фонематического слуха
С целью изучения особенностей формирования у детей дошкольного возраста со стёртой дизартрией было организовано данное исследование, которое состояло из 3 этапов: 1 этап – констатирующий. На этом этапе проводилось изучение фонематического слуха у дошкольников со стёртой дизартрией. 2 этап – формиру ...

Традиционные методы оценки знаний, умений и навыков
При проверке и оценке качества успеваемости необходимо выявлять, как решаются основные задачи обучения, т.е. в какой мере учащиеся овладевают знаниями, умениями и навыками, мировоззренческими и нравственно-эстетическими идеями, а также способами творческой деятельности. Существенное значение имеет ...

Возрастные особенности внимания

Возрастные особенности внимания

Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.

Категории

Copyright © 2019 - All Rights Reserved - www.eduriver.ru