Термин «натуральное число» впервые употребил римский ученый А. Боэций. В настоящее время свойства натуральных чисел, действия над ними изучаются разделом математики, носящим название «теории чисел». В 19 веке внимание ученых было обращено на построение и логическое обоснование математических теорий натурального числа, т. е. тех теорий, которые лежат в основе вычислений с натуральными числами.
За счетную группу, или основание системы счисления, можно применять любое число. Это положение явным образом было высказано французским математиком Б. Паскалем в 1665 году. Некоторое из систем счисления, основания которых отличны от десяти, употреблялись или предлагались в разное время. Естественным является предложение, что до того как человек принял к десятичному счислению, он пользовался при счете пальцами одной руки. Это привело его к созданию пятеричного счисления. Следы пятеричной системы счисления которой пользовались когда-то, вероятно все народы, сохранились в римской письменной нумерации. С несомненностью можно установить ясные следы пятеричного счисления у чукчей. Вот что сообщает о них уже не раз цитированный писатель Т. Семушкин, который работал ряд лет у чукчей: «Уроки арифметики чукотские дети любили не менее « разговора по бумажке» (чтения и письма). Но здесь помехой является их обычный счет пятерками, по числу пальцев на каждой руке и ноги. Взрослые чукчи таким счетом пользуются очень хорошо в пределах тысячи. Они редко ошибаются, хотя считают довольно долго. Для большого удобства они иногда снимают обувь, и счет производится на двадцати пальцах рук и ног. Пять человек составляют сотню.
Двоичная система счисления как самая простая существовала, по- видимому, вначале у всех народов. При помощи черточек и пар точек в те времена записывали числа от нуля семи смысл этой таблички указал Лейбниц (1646-1716 гг.), который рекомендовал миссионерам, сообщившим ему эту запись использовать двоичную систему нумерации для обращения китайцев в христианство: христианская религия, по которой человек-нуль, ничто рядом с богом – единицей, должна быть по душе китайцам, в системе счисления которых фигурировали только знаки для 0 и 1.
Итак, путь развития числа и счета очень сложный и для этого понадобилось несколько тысячелетий. Развитию чисел способствовало потребность числа в практической деятельности. В математике вначале было не число, а множество. В глубокой древности, чтобы считать предметы, устанавливали сравнение или между одним из множеств, или подмножеством другого множества предметов, т.е.человек воспринимал численность множества предметов без счета их. Например, о численности из пяти предметов он говорил: «Столько же, сколько пальцев на руке». Такой метод обладал недостатком: сравниваемые множества должны быть одновременно обозримы. Со временем люди нашли то общее, что существует между пятью пальцами и пятью камешками. Возникло представление о натуральном числе. Когда считали, они проговаривали «один», «два», «три», «четыре», и т. д. После того как понятие натурального числа сформировалось, числа стали самостоятельными. Затем появилась возможность изучать их как математические объекты. В настоящее время свойства натуральных чисел, действия над ними изучается разделом математики, носящим название «теория чисел».
Историко-педагогический анализ развития системы гражданского воспитания в
отечественной педагогике
Любое государство желает видеть молодое поколение достойными гражданами и патриотами своей Родины. Воспитание гражданина Отечества является объективной необходимостью и одной из важнейших целей российской государственной политики в области образования. Главным условием эффективности гражданского во ...
Особенности личности в старшем школьном возрасте
Старший школьный возраст характеризуется активным формированием так называемого чувства взрослости, которое является показателем определенного уровня самосознания и играет важную роль в формировании ценностных ориентаций старшеклассников. Выбор профессии молодым человеком принадлежит к категории та ...
Теоретико-множественный смысл понятия числа и арифметических действий над
ними
Чтобы понять, что такое натуральные числа, приведем такой пример. Между людьми имеются отношения, которые обозначаются словом «дружба». Каждый из вас должно быть, имеет друга или несколько друзей, и вам поэтому известно и понятно, что представляет собой это отношение. Но заметьте: имеется (существу ...
Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.